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MESON PRODUCTION AS A SHOCK WAVE PROBLEM

W. Heisenberg

The experimental information gained in recent years / 65 *

on the origin of the imesons makes it seem very probable

that many mesons are often produced at once in the collision

of two high-energy nucleons. It has for a long time been

established that a strong interaction of nucleons with mesons,

and particularly between mesons, can lead to such multi-

plication [4]. For a quantitative estimate, one can compare

the energy dissipation in the meson field with turbulence in

flow fields [5], or , as Fermi [3] has done, one can think of

a temperature equilibrium being attained at the moment of

collision, from which the energetic distribution of the

mesons can be calculated.

The following considerations, however, are intended

to take up the problem from the viewpoint which the author

presented in 1939 in relation to the Yukawa theory [4].

Meson production will be considered as a shock wave process,

described by a nonlinear wave equation, and it will be shown

that through such a treatment one can arrive at quantitative

results for the spectral and spatial distribution of the mesons.

I. Perceptual Description of the Shock Wave

In the following, meson production is always described in

the center-of-mass system. Transformation into the laboratory

system can be undertaken without difficulty as a supplement,

and has been done in earlier works; it need not be explained

* Numbers in the margin indicate pagination in the original
foreign text.
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here [5].

a) In the center-of-mass system, both nucleons approach / 66

each other from opposite directions (Figure 1) until they

overlap in a certain region (shaded in Figure 1). The nucleons

are shown as flat discs. Because of the Lorenz contraction,

their thickness is less by the factor of I-321 (p = center

of mass velocity) than their diameter, which one can take to

be of the order of magnitude of the Compton wavelength of the

meson, i. e., on the order of 1.4 10-13 cm. At the moment

Figure 1

of collision the velocity of the nucleoschange; so that in

their total regionlenergy is transferred to the meson field.

In the first moment of the shock wave, then, the entire energy

of the meson field is concentrated in the thin flat layer

which was filled by both nucleons at the moment of collision.

b) If one ignores the interaction of the mesons,

it would expand after the first moment according to the wave

equation

(or according to a complex linear wave equation which contains

the different meson types). The spectral and angular distri-

bution of the meson wave would then no longer change in the

course of the wave expansion. They could, therefore, be

determined by a Fourier expansion of the wave at the first
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moment. We find that the energy contained in the meson wave

between the frequencies k0 and k0 + dk0  (k° corresponds to the

energy of a single meson) would be nearly independent of ko
up to frequencies having their wavelengths of the order of

magnitude of the thickness of the layer in which the

collision occurs; i. e., on the order of . ( \ is

the meson mass). For ko>k0 = - the intensity will decrease

rapidly as a function of ko .

de=const-dko for\ koTko" \ (2)

Correspondingly, for the number of mesons in the interval

dko one obtains

dn= consto for - kokor (3)

Figure 2 shows the course of 9 on the axis perpendicular to

the plane of emission (shortly after the act of emission).

It also shows de/dko\ and dnldko\ , under the assumption (1). / 67

Spectrum (3) corresponds to the well-known x-ray braking

spectrum of the electrons. Even if a considerable part of

the nucleon energy is transferred to the meson field, it

never leads to a large number of emitted mesons, because the

energy of an individual meson would average ko\ .

0 -----.- cAm -kTo .-. ........... fr .--
a . . b - -- . -.

Figure 2 a-c.
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c) In reality, though, we cannot ignore the interaction

of the mesons. The wave expands according to a nonlinear

wave equation. Only in the limiting case of low intensity

does it transform approximately into the linear form. The

a ---- -- . c

Figure 3 a-c.

nonlinearity has the result, which we shall recalculate later,

that the singularity at the head of the wave is somewhat rounded

off. As a result, energy is transferred from the short to the

S:f' f:2 --- -'- " -_- - -'F - -"

.. .j o ii- *= - "
" -_ - -- _7. = - . .. : ..- _ S -. ,

a b c d

Figure 4 a-d.

long waves during the expansion process, and the spectral

distribution at the end of the expansion process falls off

more rapidly than if (1) were valid. Qualitatively,

one obtains the relations shown in Figure 3.

The spatial expansion is shown in Figure 4 a-d.

At the moment of impact the entire energy is concentrated

in the layer of the two nucleons (a). Then two shock fronts
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move out to the right and left. The major portion of the energy / 68

still resides in the two shock fronts, but there is also

wave excitation in the space between them, which contains the

rest of the energy'(b). Now the shock fronts proceed farther.

The excitation in their wake spreads over a wider space, and

that near the starting point becomes a new wave expansion.

The energy in the shock fronts has become smaller. It has

shifted into the remaining wave region [and, therefore, to

greater wavelengths (c)1.J On continued advance, the excitation

at the center decreases. A true wave forms, propagating faster

in the direction of the shock fronts than perpendicular to it,

because waves of short wavelength have a higher propagation

ve\locity (group velocity). Only at very slight intensity will

the excitation spread to all sides, even though with the

velocity of light. The energy in the shock fronts has by now

become so small that here, too, the nonlinearities play no

important role. Continued progress is according to the

usual linear wave equation (d).

In this perceptual description we have so far completely

ignored the quantum theoretical aspects of the problem. That

is a quite useful approximation, as it deals with the production

of many mesons; that it, with a process having high quantum

numbers. The work mentioned above [4] describes in detail how

to undertake the corresponding transformation into quantum

theory. Here it is sufficient to take the following qualitatively

from Figure 4d: A large part of the energy is radiated out

in all directions in the form of mesons having wavelengths

comparable with the diameter of the disc; i. e., with lx.

In the direction perpendicular to the axis the momentum will

only rarely be able to be greater than ~x\ because the Fourier

coefficients of such waves become very small. But the momentum

in the direction of the axis can be greater because the shorter

wavelengths appear in the shock wave front proper. Therefore,
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mesons with the energy ko are generally emitted only in

an angular region of the order of magnitude x!ko\ about the

two primary directions. The heavier mesons are also emitted

principally only in the shock wave front.

II. Solution of the Shock Wave Equation

a) The expansion of the shock wave depends on the form

of the nonlinear wave equation based on the mesons. But it

can be shown that there is a limiting case for "strong"

interaction in which the spectral distribution of the mesons

can be stated independently of the particular form of the wave

equation.

If we consider first only the spectral distribution, and / 69

not the directional distribution, the solution of the non-

linear wave equation can be eased by some simplifications:

Consider the plane in which the emission occurs to be extended

to infinity, and the layer infinitely thin. Then, because of

the Lorentz invariance of the wave equation, 9i can depend

only upon s=t -x2\ . The partial differential equation thus

transforms into an ordinary differential equation, the

solution of which can be discussed more easily.

Two nonlinear wave theories will be considered as examples:

1. The equation discussed by Schiff [10] and Thirring [12]

in relation to the nuclear forces:

0 ;'2q-29 3 " . (4)

2. A wave equation which arises from the Lagrange function

S62 (5)
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following the pattern of the earlier work by Born [1]. Some

time ago, Born commented that nonlinear theories of this type

have singular solutions in a smaller degree than the linear

theories. That was used at the time for the self-energy of

electrons, but it also applies to meson production. Previous

studies on meson production have already been based on the

Lagrange function (5) [4].

On 1: For P=p(s)\ the first of these two equations trans-

forms into

4d (d -)+ x2 9 + 993=O (4a)

For n=o\ one returns to the linear wave equation (1) and

the solution is then

9p=aj,(Ifs) for s>o

(6a)
=O. Jfor s<0,

Here a is a constant of integration; see also Figure 2. For

_o one can give an exponential series expansion with s = 0:

9=a[I-( a2) s+2()+3 at)(t2 + a2)S2- -+

for s>o (6b)

=0 for s<0.

We see immediately that (4) deals with a "weak" interaction

which changes nothing with respect to the discontinuity of the

wave function at the shock wave front. This is related to the

fact that the theory characterized by (4) is one of the group / 70

of renormalizable theories. The coupling parameter, n\ , has
the dimension of a pure number. It has already been established

in various ways that the renormalizable theories contain only

7



"weak" interactions which do not in general give rise to

multiple production of mesons.

On 2: The situation is different, however, for the wave

equation characterized by (5). For q=,(s)\it reads:

4 s (S94') + X29= 814 S9'12 +
+t "(7)

If we assume that x-o\d (vanishing rest mass of the mesons),

then the solution can be written immediately:

= a1g a2 Sa 414s+as) for sO

=0 f or sO. (8)

In the general case (x--To) we can again state series

expansions. We set

4 S;2 (9)

and obtain

./(C) (1+a$- 27a 2a-i . ) for
• . fo0

Re- cos(/+6) for i>>i (10)

=o for .

The constants y and 6are unambiguously determined by the

integration constant, a, but their values have not been

calculated.

One can see that here the nonlinearity has extensively

changed the nature of the solution. The discontinuity of q\

at s = 0 has disappeared. Only V'\behaves discontinuously.

In the vicinity of s = 0, 1 behaves Wike /.
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If one expands Tp(s)=q(x,t) at a given time into a Fourier

integral according to the wave number, k, then, except for

constant factors, one obtains an expression of the form

(k, t) -k- e-4 k t / I 11 )

for the coefficients 92(k,t) for large values of k (k-ko>>) . The

factor t clearly arises because of the fact that during the

entire expansion process, energy flows continuously from the

head of the shock wave into the other parts of the wave, and,

therefore, into the lower frequencies. Actually the supply

of energy in the head of the shock wave is infinite here. This

is a necessary consequence of the assumption that the shock / 71

wave begins in an infinitely thin plane layer, because from

this assumption we concluded that the solution of p(x,t)\ depends

only upon ti-x2\ , and is therefore invariant with respect to

the Lorentz transformation in x,t space. But a finite energy

momentum vector would indicate a direction in this space,

and thus could not be part of an invariant solution.

Actually, of course, the shock wave starts in a layer of

finite thickness . The energy-momentum vector is

finite and the rise of the Fourier amplitudes in (11) comes

to a stop after a certain time when the energy supply of the

wave front is exhausted. Then the Fourier coefficients for

large values of t fall off more strongly than as k-3 /2

as a function of k for k>kom.= Thus, one obtains for

the intensity distribution

•de dko  "

d- cons for ko kom=(12)

and

dn - dko
dk const (13)
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for the same region.

This is the form of the spectrum which was discussed

previously in relation to multiple generation [4, 5] and is

also presented in Figure 3.

The wave equation (7) taken from Born's theory [1]

represents a typical case of a "strong" interaction and leads

to multiple production of mesons. The coupling parameter

has the dimension of the fourth power of a distance.

b) Now it will be shown that the spectrum (12) and (13)

quite generally corresponds to the limiting case of strong

interaction, independent of the particular form of the

Lagrange function and independent of the special properties

of the particles involved.

We beginwith an arbitrary Lagrange function for a

scalar wave function i and its first derivative OI.x,\ .

Because of the Lorentz invariance, L can depend only on

and \ . For very small values of p\ and a!ax,, L must

transform into the Lagrange function of the ordinary wave

equation (1). Now we inquire about the value of in

the vicinity of s=o(s>o) For so can either become

infinitely large, take on a finite value, or approach zero.

Next, we can exclude the last of these three possibilities, / 72
because then the nonlinearity would play no part just at the

critical point, s = 0. But that is impossible because for

the usual wave equation (1), (a (')at the critical point\

is by no means zero, but infinite.

Of the two remaining possibilities, the second obviously

gives the smoother curve for p\at the singular point. Thus,

it corresponds to the stronger interaction. Here, in the
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vicinity of s = 0, we get

a= -4S ] const (+ 0 and + ),1)z. o., ..- (14)

from which

<(s)- const J/s (15)

so that behavior as in (7) and (10) follows.

c) But one can give a still more general proof for (12)

and (13), which also applies for arbitrary particles of high

spin value. It has already been mentioned under IIa that in

the limiting case in which the shock wave begins in an

infinitely thin layer its total energy content must be infinite,

because the wave function is then invariant to rotations in

x,t space. Now the energy spectrum of the mesons falls off

more steeply the greater the energy dissipation due to the

interaction is. Thus, to the extent that the spectrum has

the form of a power law at all (and that could apply for most

of the simple wave equations), it cannot fall off more sharply

than in (12) and (13), because here the total energy still

diverges for ob. (namely, logarithmically). The spectrum

(12) and (13) therefore just corresponds to the limiting case,

of strong interaction. Thus, as has already been said, the

Lagrange function (5) taken from Born's theory gives only a

special example of a theory with strong interaction. But

the spectrum, (12) and (13), remains correct also for very

much more complex Lagrange functions which contain various

types of mesons as a solution for the limiting case of small

interaction, if we deal with a theory with strong interaction.
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III. Application to Meson Production

The multiple production of mesons will now be treated

quantitatively, with the assumptiofi of strong interaction.

a) One of the most important quantities for character-

ization of a meson shower is the average energy of the mesons

in the center-of-mass system. To a very crude approximation, / 73

one can consider the spectrum (12, 13) as exactly valid between

k==us (rest mass of the type of mesons concerned) and ko=kom.-\

Then we have

h o m\dk kom

-E -A ' d=Alg
.... , ' Xi

K° m(16)hdho A,(,_

and it follows that

Ig - -m

ho- -i for kom>\. (17)

kom

For kom.<ithe type of mesons concerned would not occur at all.

In reality, the spectrum will have to contain the factor

kdk0 just because of the phase space volume, and will not

have the form of (12, 13) at all for small k. Furthermore,

it will not disappear completely for ko>ko\, but only

diminish more strongly than in (12) and (13). One can try

kdh odej= A k , 4L)(18)0 kg,,)

as probably a somewhat better solution. Then we obtain

12



sc! = A --( + j ,'- 2 9 lv + )O 19
cc c(19)

(+ 20t2 2c/~L

-I + fV i -- e Ig 1 + l/ -
4 S~+,2z 4i-+~2 ', (20)

where we set xlko,=o\.

Both approximations, (17) and (20), are plotted as functions

of Ig(1/a)\ in Figure 5. The difference between the two curves

gives a measure for the inaccuracy of the entire estimate.

It appears from these calculations that in the limiting

case of strong interaction[,(the average meson energy increases

only logarithmically and that, therefore, the number of mesons

increases almost in proportion to the energy transferred into

the meson field in the center-of-mass system.

b) To be sure, the relations are complicated more by the / 74

occurrence of new types of mesons at higher energies. We can

assume that for sufficiently high values of ko(ko>xi)\ the
relative proportion gi of the meson specieslxi.'is independent of]

k , and depends only on the form of the shock wave equation.

In this region, then, the various species of mesons generally

occur in comparable frequency, but the gi need not be

simply proportional to the statistical weight of the species

concerned. We normalize

' 1(21)

and set

A= g1 A. (22)
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SEq. (20)

,q(17
Eq. (252

0 3 0 1 2 3 V 5 6 7 8
ktom

Figure 5 Figure 6

Then, in the rough approximation of (16) and (17) we have

e=A gg- , (23)

n=A 1.4Z(1 X) (24)

therefore,

g=' gg _, for x,-kom

gi Ig 1%m
I (25)

=0 
for 

(5

For large ko,,,(k 0 n>x)\, therefore, the numbers in the various

groups of mesons behave as g;* Ij . As kom decreases, the number

of heavy mesons decreases faster than that of the lighter. As

soon as kom decreases below the value x', ,the species of mesons

in question disappears completely. Instead of (25), then,

in the approximation of Equations (18) to (20),'we would have

9i 4 ;+ 2c , 2i/1-7 c.

n,- (26)

S-14
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The factor of gj~,x\ in (25) and (26) which is characteristic /75

for the dependence of ni on kom is shown graphically in Figure 6.

With the second'approximation formula, there would still be

a small number of mesons of the type Yi\ remaining even for

kom<Xi , as is also to be expected physically.

c) If one wishes to make statements about the total

number of mesons emitted, one must also know the total energy,

e\, of the meson field in (25) and (26). For this quantity,

we can at first state only a maximum value: e\ can be no

greater than the kinetic energy of both nucleons in the

center of mass system before the collision.

Because in general only a fraction of this energy is

actually transmitted to the meson field, it is convenient to

introduce this fraction, y, as the "degree of inelasticity"

of the collision. Then we have (M = mass of the nucleons):

=y*2M -1),\ (27)

where Oy.

One would expect that for a central collision y would have a

value near 1, while only a small fraction of the kinetic

energy will be transferred to the meson field for a grazing

collision.

If we call the distance between the centers of the nucleons

at the moment of collision b, then we can consider the

overlap integral of the a- meson fields of the two nucleons

as a measure for the strength of the interaction. If one

simply sets y equal to this overlap integral as a very crude

estimate of the degree of inelasticity, one gets

y=e , (28)
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in whichi xj specifically signifies the mass of the x mesons.\

It follows from this that the effective cross section for a

value of 7 between yl and +dy\jis

da2bdb2 d7 Ig . (29)

If one wishes to define a total effective cross section,

one must define a minimum value of 27\. For instance, if one

wishes to determine the total effective cross section for

multiple production, one must establish as the mimimum value

of ~\that which will produce at least two mesons.

Al(30)

(Here E0 refers to the lightest type of mesons, i. e., to

the -i mesons.)

From (30) it follows that / 76

in= ng y (31)

and

2 C I -Yrnin + 7min g Ymm) "
6 vmia(32)

It must be emphasized that the estimation of the frequency

distribution of the values of y in Equations (28) to (32)

is independent of the preceding considerations on the

expansion of the shock wave, and must be considered as less

reliable. So far there is not enough observational material

to determine the frequency distribution of y experimentally.

Table 1, following, gives the total effective cross

section, the expected values of y, n~,\ and n\ (number of the

r-and -, mesons, respectively), their average energy, and,

16



TABLE I

E 10 t10o' 10' 10' BeV

a O, S1 0,49 0,85 1,3 t10-2 4
cm

2

0,34 0,19 0,13 0,09
S 3,6 0,7 4,2-0,8 5, .2 0,8S 8,0 ±1

- 0,94-0,2 2,Q04- 0,4 3,4-±0,6
o 0,25±0,04 0,36-0,04 0,56 0,05 0,67 0,06 BeV

o - 1,0±0,2 1,4±0,15 2,0±0,18 BeV

V=i f . i -,7"±2 22,i 40,3 6 i(g -4,7 1 15-+6 38 -6'

*,Translator's note: Commas in numbers represent decimal points.1

finally, the number of mesons in the limiting case of y = 1

as functions of the primary energy, E (in the laboratory system).

Other types of mesons such as -\and - mesons are not con-

sidered. In addition, we arbitrarily set g=2g,\ , that is,

g,= ,g=\, in order to take into account the relatively

great frequency of the wx- mesons found according to the newer

measurements in Bristol. These numbers will have to be revised

later on the basis of more accurate measurements. We use 0.61

BeV for the mass of the x-i meson. In order to express the

inaccuracy of the theoretical estimate, we have taken the

average of values obtained from (16, 17) or (18) to (20)

(except for the first two columns) and have listed half the

difference as the error.

d) The angular distribution of the emitted mesons appears

from the perceptual considerations in I. Of course, the

details of the angular distribution still depend on the shock

wave equation. But, quite generally, the momentum of the

mesons perpendicular to the primary direction will only rarely

be able to exceed the value x\to any extent. As a rule, mesons

with the energy ko are emitted in an angular region of the

magnitude W/ko\ about the axis. The distribution of the x3mesons / 77
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is, therefore, always anisotropic, while in the center of

mass system the distribution of the slower xj mesons will be

to some extent isotropic.

IV. Comparison with Experience

So far, only a few meson showers have been observed with-

out gray or black tracks. Only for such showers can one

assume with some probability that they were from collisions

of only two nucleons, without involvement of a larger

atomic nucleus. But if one also includes showers with a few

(two to three) thick tracks to test the theory, the perturb-

ation of the shower by the atomic nucleus will generally be

small. But because a secondary scattering of the mesons

produced could have taken place at the atomic nucleus, the

determination of the primary energy from the angular distri-

bution and the evaluation of the angular distribution itself

become very unreliable.
TABLE 2

E 30 40 40 90 130 1000 2000 30000 BeV

-n,+ x 9 18 25 10 18 I 9 12 21

yemp 0,51 0,8 1,0 0,38 0,61 0,16 ,17 0.1

* Translator's note: Commas i numbers indicate decimal points.1

Observations of showers suitable for comparison with the

theory have been presented so far by Teucher [11], the working

group at Bristol [2], by Schein et al. [9], Pickup and

Voyvodic [8] and Hopper, Biswas and Derby [6]. If one tries

to estimate the primary energies from the angular distribution

(which is quite uncertain in some cases) according to the

reports in the publications, we obtain the meson numbers for

the eight observed showers in the second column of Table 2,

if we assume a ratio of 1:2 for neutral to charged mesons.

These numbers are already somewhat uncertain because of the

18



neutral mesons. If we assume that the last two columns in

Table 1 are correct, we obtain an empirical value of y for

each of these showers, which is shown in the third column of

Table 2.

We note first that the meson numbers are actually not

unambiguous functions of the primary energy. The y values

fluctuate strongly, as was to be expected. But they are on

the average somewhat greater than would have been conjectured

according to Table 1. This could be due to the fact that

small showers can be surveyed more easily than large ones;

but it could also mean that the estimate in Equation (28) is

still too rough *. Also, the empirical values of y in]

Table 2 are themselves still quite uncertain because, for / 78

instance, the proportion of ;-\mesons is not accurately known.

Perkins [7] also reports relatively high y values, but one

must await still more experimental material.

It has been possible to measure two showers (Teucher, [11],

and Hopper, Biswas and Derby [6]) so accurately that the average

energy of the mesons in the center of mass system could be

reported. In the first case (40 BeV, some 25 mesons) the

observed average meson energy is 0.29 BeV, compared with 0.31

BeV according to Table 1. In the second case (1,000 BeV, some

9 mesons) there is some uncertainty because of the possibility

*1 Comment added in proof. At the Copenhagen Conference in
June, 1952, LeCouteur mentioned that the expected value of
y in heavy material (e. g., in the photographic emulsion)
must be considerably greater than in hydrogen (Table 1
refers to hydrogen) because "grazing" collisions can
occur only with nucleons at the edge of the atomic nucleus.
Powell has also reported on new experiments indicating
that the particles designated here as x-Emesons can be
separated into two groups with masses of 0.74 and 0.54
BeV, with quite different properties.
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that some of the particles observed could have been ' mesons,

not taken into consideration by the authors. (According to

Table 1, one should expect some 3 x-mesons among 9 mesons.)

If we ignore that, the observed average .r meson energy in the

center of mass system was 0.44 BeV, compared to 0.50 BeV

according to Table 1. Thus, these two measurements confirm the

relatively low meson energy of Table 1. On the other hand,

Perkins [7] reports the value of 1.5 BeV as the average energy

of mesons from a series of showers with a primary energy of

102 to 103 BeV. This is considerably higher. Here, though,

we must consider the uncertainty in the measurement of the

primary energy. Any error in the primary energy generally

increases the average meson energy, as this has the smallest

value just in the center of mass system.

On the frequency of the x mesons we have as yet only the

statement of the Bristol group that it is comparable with that

of the -,mesons at high energies [7]. For the present,

this ratio cannot be determined from the theory. (In Table

1, we arbitrarily set g.g,=2 .)

With respect to the angular distribution, it is observed

that the distribution in the center of mass system is rather

isotropic for showers of low energy, while distinct accumulations

appear about the primary direction and the opposite direction

in showers of high energy. This corresponds exactly to the

picture of Ic. In fact, mesons of high energy appear always

to be distributed anisotropically, and in particular, quite

generally, the x-Imesons (Perkins [7]). The degree of the

anisotropy also corresponds to the theoretical estimate.

On the whole, then, one has the impression that the

formulas derived in III under the assumption of "strong"

20



interaction satisfactorily represent experience; and that,

therefore, the interaction of the elementary particles at

high energy actually belongs in the group of the "strong"

interactions first studied by Born.

0
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